X
““Constructive Computer Architecture:

Multirule Systems and
Concurrent Execution of Rules

Arvind
Computer Science & Artificial Intelligence Lab.

Massachusetts Institute of Technology C

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-1

Multi-rule Systems

.
Repeatedly: Non-deterministic
Select a rule to execute -« choice; User

annotations can
Compute the state updates be used in rule
Make the state updates selection

One-rule-at-a-time-semantics: Any legal
behavior of a Bluespec program can be
explained by observing the state updates
obtained by applying only one rule at a time

However, for performance we execute multiple
rules concurrently whenever possible

September 18, 2017 http://csg.csail.mit.edu/6.175 LO6-2

Elastic pipeline

p
4
X
inQ fifol fifo2 outQ
rule stagel; #® Can these rules fire
fifol.eng(fl(inQ.first)); concurrently?
inQ.deqg() ; endrule
rule stage2; Yes, but it must be
fifo2.enqg(f2 (fifol.first)); possible to do eng
fifol.deq; endrule and deq on a fifo
rule stage3; simultaneously
outQ.eng(f3 (fifo2.first));
fifo2.deqg; endrule

September 18, 2017 http://csg.csail.mit.edu/6.175 LO6-3

One-Element FIFO
Implementation

p
4
module mkFifo (Fifo# (1, t)):
Regt# (t) d <- mkRegU; N
Reg# (Bool) v <- mkReg(False); Tﬁﬁ?g
method Action enqg(t x) if (!v); notfull <gqg—
v <= True; d <= x; ot et Wg FIFO
endmethod +ﬁ§_:
method Action deq if (v); nmfmmyLﬁ%_g

v <= False;

endmethod
method t first if (v);
return d;
endmethod Can eng and deg methods be ready at
atidficdil e the same time?
No! Therefore they cannot
execute concurrently! (

September 18, 2017 http://csg.csail.mit.edu/6.175 LO6-4

Concurrency when the FIFOs do

not permit concurrent eng and deg

N

L

e

X
inQ fifol fifo2 outQ
not not not not full
empty empty empty
& &
not full not full

At best alternate stages in the pipeline will
be able to fire concurrently

September 18, 2017 http://csg.csail.mit.edu/6.175

LO6-5

Two-Element FIFO

vb va

N

Assume, if there is only

[
BN D D . one element in the FIFO
db da it resides in da

Initially, both va and vb are false

First enqg will store the data in da and mark va
true

An eng can be done as long as vb is false; a
deq can be done as long as va is true

September 18, 2017 http://csg.csail.mit.edu/6.175 LO6-6

Two-Element FIFO vb va

BSV cod ==

coge

4 " DD =

module mkFifo (Fifo# (2, t)); db da
Reg#t (t) da <- mkRegU () ;

Assume, if there is only
one element in the FIFO

(
Reg# (Bool) va <- mkReg(False);
(it resides in da

Regi (t) db <- mkRegU () ;
Reg# (Bool) vb <- mkReg(False);
method Action eng(t x) if (!vb);
if (va) begin db <= x; vb <= True; end
else begin da <= x; va <= True; end
endmethod
method Action deqg if (va); .
if (vb) begin da <= db; vb <= False; end same time?

Can both eng
and deq be
ready at the

else begin va <= False; end yes
endmethod
method t first if (va); return da;
endmethod
endmodule

September 18, 2017 http://csg.csail.mit.edu/6.175 LO6-7

Two-Element FIFO

concurrency analysis

N

‘method Action eng(t x) if (!vb); va éa
if (va) begin db <= x; vb <= True; end
else begin da <= x; va <= True; end - DD —
endmethod db da

method Action deg if (va); , .
if (vb) begin da <= db; vb <= False; end | Wecantgetinto

else begin va <= False; end ths state n}enq a(;nd
endmethod €q are perrorme

in some order

Will concurrent execution of eng and deg cause a double
write error?

s Initially vb=false and va=true
s eng Will execute: db <= x; vb <= True;
s deqg Will execute: va <= false;

#® The final state will be va = false and vb = true;
with the old data in da and new data in db oops!

ho double-
write error

September 18, 2017 http://csg.csail.mit.edu/6.175 LO6-8

Two-Element FIFO

concurrency analysis - continued

N

if (va) begin db
else begin da
endmethod
method Action deqg
if (vb) begin da
else begin va
endmethod

<=
<=

if
<=
<=

‘method Action eng(t x) if (!vb);

X; vb <= True; en
X; va <= True; en

(va) ;
db; vb <= False;
False; end

d
d

end

vb va
.

L

db da

In this implementation, eng and deg should not be

called concurrently

later we will present a systematic procedure to decide which

methods of a module can be called concurrently

First, we will study when two rules that only use
registers can be executed concurrently

September 18, 2017

http://csg.csail.mit.edu/6.175

LO6-9

Concurrent execution of
rules

Two rules can execute concurrently, if
concurrent execution would not cause a
double-write error, and

The final state can be obtained by executing
rules one-at-a-time in some sequential order

N

September 18, 2017 http://csg.csail.mit.edu/6.175 LO6-10

Can these rules execute concurrently?

(without violating the one-rule-at-a-time-semantics)
UV

Example 1 Example 2 Example 3
rule ra; rule ra; rule ra;

x <= x+1; x <= y+1; x <= y+1;
endrule endrule endrule
rule rb; rule rb; rule rb;

y <= y+2; y <= x+2; y <= y+2;
endrule endrule endrule

ra before rb Final value of (x,y) (initial values (0,0))
ra < rb (1,2) (1,3) <Z::::>
rb < ra (1,2) (3,2) (3,2)
Concurrent (1,2) (1,2)
No Conflict Conflict ra<rb

September 18, 2017 http://csg.csail.mit.edu/6.175

LO6-11

scheduling

Rule

N

possib
rules t
ture),

rules d

The BSV compiler schedules as many rules as

e for concurrent execution among the
nat are enabled (i.e., whose guards are
provided it can ensure that the chosen

on’t conflict with each other

Conflict:

= Double write
n If the effect of rule execution does not appear to be

as if

September 18, 2017

one rule executed after the other

http://csg.csail.mit.edu/6.175

LO6-12

some insight into
Concurrent rule execution

N

L/
bi o »
B B e B :Ze'fa;'
Rk .
il I I | clocks
Ri |

There are more intermediate states in the rule
semantics (a state after each rule step)

In the HW, states change only at clock edges

September 18, 2017 http://csg.csail.mit.edu/6.175 LO6-13

N

Parallel execution
reorders reads and writes

L

September 18, 2017

Rules

rule

reads

|

Ireads
1

> —| — . .
writestreads writes¥reads wrlteslreads wrltesI reads wrlte'sI

S A

Writeg,l reads write§|

steps

Hw

'! . | clocks

In the rule semantics, each rule sees (reads)
the effects (writes) of previous rules

In the HW, rules only see the effects from
previous clocks, and only affect subsequent
clocks

http://csg.csail.mit.edu/6.175 LO6-14

Correctness

N

L/
Ri | Rj rul
RUIES weet—f ooe kA e bk ook —bee | :Ze'fa;'
Rk :
it I I | clocks
R,

The compiler will schedule rules concurrently
only if the net state change is equivalent to a
sequential rule execution

September 18, 2017 http://csg.csail.mit.edu/6.175 LO6-15

Compiler test for concurrent
rule execution james Hoe, Ph.D., 2000

@ Let RS(r) be the set of registers rule r may read
#® Let WS(r) be the set of registers rule r may write

N

Rules ra and rb are conflict free (CF) if
(RS(ra)mWS(rb) = @) A (RS(rb)nWS(ra) = @) A
(WS(ra)nWS(rb) = 9)

Rules ra and rb are sequentially composable (SC)
(ra<rb) if
(RS(rb)~WS(ra) = @) A (WS(ra)nWS(rb) = 9)

If Rules ra and rb conflict if they are not CF or SC

September 18, 2017 http://csg.csail.mit.edu/6.175 LO6-16

Compller anhalysis

Example 1

rule ra;

x <= x+1;
endrule
rule rb;

y <= y+2;
endrule

RS(ra)

WS(ra)

RS(rb)

WS(rb)
RS(ra)nWS(rb)
RS(rb)nWS(ra)
WS(ra)nWS(rb)
Conflict?

September 18, 2017

Example 2

rule ra;

endrule
rule rb;

endrule

x <= y+1;

y <= x+2;

{x}
{y}
{y}

CF

http://csg.csail.mit.edu/6.175

{x}
{x}
{y}
{y}
{x?}

1)
C

Example 3

rule ra;

x <= y+1;
endrule
rule rb;

y <= y+2;
endrule

{x}
{y}
{y}
{y}

SC

Concurrent scheduling

The BSV compiler determines which rules
among the rules whose guards are ready can
be executed concurrently

It builds a simple list-based scheduler:
s Picks the first enabled rule in the list

s Schedules the next enabled rule if it does not conflict
with any of the rules scheduled so far

s Repeats the process until no more rules can be
scheduled

Such a scheduler can be built as a pure combinational
circuit but it is not fair

N

In practice it does fine and one can get around it
programmatically
September 18, 2017 http://csg.csail.mit.edu/6.175 LO6-18

>Scheduling and Control
Logic

/4

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-19

N

current
state

September 18, 2017

Compiling a Rule

rule r (f.first() > 0) ;

Xx<=x+1; fdeq();
endrule
— guard
N\
M M T

L 5 next

‘rdy signals next state state

read methods values

7

http://csg.csail.mit.edu/6.175 LO6-20

Combining State Updates:

_Strawman
UV
U5
7’'s from the rules ,
that update R : OR
T 7
’ flip-flop
enable
, O r— L \
o0's from the rules . : OR |
that update R : . next state
5. - value
nl

What if more than one rule has a true guard?
September 18, 2017 http://csg.csail.mit.edu/6.175 LO6-21

Combining State Updates

N

i e P one-rule-at-
' from all Scheduler: . a-time
the rules : Priority : OR scheduler is
i Encoder , conservative
: On <
’ flip-flop
enable
, O R— I . \
0's from the rules . : OR |
that update R . o / next/state
g value
8n,R

Scheduler ensures that at most one ¢, is true
September 18, 2017 http://csg.csail.mit.edu/6.175 LO6-22

Scheduling and control logic

A
Y

JModu/eS Rules "CAN_FIRE” "WILL FIRE” Modules
(Current state) LS R 04 (Next state)
. . /
T, - | Scheduler | - R
Ty O

5,]

B .

N\ > /
[J / : e o o \ o
[J 61 > []
cond| T, T .
: Muxin ° l
l action| . |ee—— . = :
n O R
B s R
/ Compiler synthesizes a scheduler such that at any \

given time ¢'s for only non-conflicting rules are true
September 18, 2017 http://csg.csail.mit.edu/6.175 LO6-23

Takeaway

One-rule-at-a-time semantics are very
important to understand what behaviors a
system can show

Efficient hardware for multi-rule system
requires that many rules execute in parallel
without violating the one-rule-at-time
semantics

BSV compiler builds a scheduler circuit to
execute as many rules as possible
concurrently

N

September 18, 2017 http://csg.csail.mit.edu/6.175

LO6-24

