
Constructive Computer Architecture:

Multirule Systems and
Concurrent Execution of Rules

Arvind
Computer Science & Artificial Intelligence Lab.
Massachusetts Institute of Technology

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-1

Multi-rule Systems

Repeatedly:

Select a rule to execute

Compute the state updates

Make the state updates

One-rule-at-a-time-semantics: Any legal
behavior of a Bluespec program can be
explained by observing the state updates
obtained by applying only one rule at a time

Non-deterministic
choice; User
annotations can
be used in rule
selection

However, for performance we execute multiple
rules concurrently whenever possible

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-2

Elastic pipeline

x

fifo1inQ

f1 f2 f3

fifo2 outQ

rule stage1;

fifo1.enq(f1(inQ.first));

inQ.deq(); endrule

rule stage2;

fifo2.enq(f2(fifo1.first));

fifo1.deq; endrule

rule stage3;

outQ.enq(f3(fifo2.first));

fifo2.deq; endrule

Can these rules fire
concurrently?

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-3

Yes, but it must be
possible to do enq
and deq on a fifo
simultaneously

module mkFifo (Fifo#(1, t));

Reg#(t) d <- mkRegU;

Reg#(Bool) v <- mkReg(False);

method Action enq(t x) if (!v);

v <= True; d <= x;

endmethod

method Action deq if (v);

v <= False;

endmethod

method t first if (v);

return d;

endmethod

endmodule

One-Element FIFO
Implementation

not full

not empty

not empty

n

n

rdy

enab

rdy

enab

rdy

e
n
q

d
e
q

fi
rs

t

FIFO

Can enq and deq methods be ready at

the same time?

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-4

No! Therefore they cannot
execute concurrently!

Concurrency when the FIFOs do
not permit concurrent enq and deq

x

fifo1inQ

f1 f2 f3

fifo2 outQ

not
empty

not
empty

&
not full

not
empty

&
not full

not full

At best alternate stages in the pipeline will
be able to fire concurrently

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-5

Two-Element FIFO

Initially, both va and vb are false

First enq will store the data in da and mark va
true

An enq can be done as long as vb is false; a
deq can be done as long as va is true

Assume, if there is only
one element in the FIFO
it resides in da

db da

vb va

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-6

module mkFifo (Fifo#(2, t));

Reg#(t) da <- mkRegU();

Reg#(Bool) va <- mkReg(False);

Reg#(t) db <- mkRegU();

Reg#(Bool) vb <- mkReg(False);

method Action enq(t x) if (!vb);

if (va) begin db <= x; vb <= True; end

else begin da <= x; va <= True; end

endmethod

method Action deq if (va);

if (vb) begin da <= db; vb <= False; end

else begin va <= False; end

endmethod

method t first if (va); return da;

endmethod

endmodule

Two-Element FIFO
BSV code

Assume, if there is only
one element in the FIFO
it resides in da

Can both enq
and deq be
ready at the
same time?

db da

vb va

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-7

yes

method Action enq(t x) if (!vb);

if (va) begin db <= x; vb <= True; end

else begin da <= x; va <= True; end

endmethod

method Action deq if (va);

if (vb) begin da <= db; vb <= False; end

else begin va <= False; end

endmethod

Two-Element FIFO
concurrency analysis

no double-
write error

Will concurrent execution of enq and deq cause a double

write error?

 Initially vb=false and va=true

 enq will execute: db <= x; vb <= True;

 deq will execute: va <= false;

The final state will be va = false and vb = true;

with the old data in da and new data in db

db da

vb va

oops!

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-8

we can’t get into
this state if enq and
deq are performed
in some order

method Action enq(t x) if (!vb);

if (va) begin db <= x; vb <= True; end

else begin da <= x; va <= True; end

endmethod

method Action deq if (va);

if (vb) begin da <= db; vb <= False; end

else begin va <= False; end

endmethod

Two-Element FIFO
concurrency analysis - continued

In this implementation, enq and deq should not be

called concurrently
later we will present a systematic procedure to decide which
methods of a module can be called concurrently

First, we will study when two rules that only use
registers can be executed concurrently

db da

vb va

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-9

Concurrent execution of
rules

Two rules can execute concurrently, if
concurrent execution would not cause a
double-write error, and

The final state can be obtained by executing
rules one-at-a-time in some sequential order

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-10

Can these rules execute concurrently?
(without violating the one-rule-at-a-time-semantics)

rule ra;

x <= x+1;

endrule

rule rb;

y <= y+2;

endrule

Final value of (x,y) (initial values (0,0))

Example 1

No Conflict

rule ra;

x <= y+1;

endrule

rule rb;

y <= x+2;

endrule

Example 2

rule ra;

x <= y+1;

endrule

rule rb;

y <= y+2;

endrule

Example 3

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-11

Ex. 1 Ex. 2 Ex. 3

ra < rb

rb < ra

Concurrent

ra < rbConflict

ra before rb

(1,2)

(1,2)

(1,2)

(1,3)

(3,2)

(1,2)

(1,2)

(3,2)

(1,2)

Rule scheduling

The BSV compiler schedules as many rules as
possible for concurrent execution among the
rules that are enabled (i.e., whose guards are
ture), provided it can ensure that the chosen
rules don’t conflict with each other

Conflict:

 Double write

 If the effect of rule execution does not appear to be
as if one rule executed after the other

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-12

some insight into

Concurrent rule execution

There are more intermediate states in the rule
semantics (a state after each rule step)

In the HW, states change only at clock edges

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-13

Parallel execution
reorders reads and writes

In the rule semantics, each rule sees (reads)
the effects (writes) of previous rules

In the HW, rules only see the effects from
previous clocks, and only affect subsequent
clocks

Rules

HW
clocks

rule

steps
reads writes reads writes reads writesreads writesreads writes

reads writes reads writes

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-14

Correctness

The compiler will schedule rules concurrently
only if the net state change is equivalent to a
sequential rule execution

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-15

Compiler test for concurrent
rule execution James Hoe, Ph.D., 2000

Let RS(r) be the set of registers rule r may read

Let WS(r) be the set of registers rule r may write

Rules ra and rb are conflict free (CF) if
(RS(ra)WS(rb) = Ø)  (RS(rb)WS(ra) = Ø) 
(WS(ra)WS(rb) = Ø)

Rules ra and rb are sequentially composable (SC)
(ra<rb) if

(RS(rb)WS(ra) = Ø)  (WS(ra)WS(rb) = Ø)

If Rules ra and rb conflict if they are not CF or SC

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-16

Compiler analysis
rule ra;

x <= x+1;

endrule

rule rb;

y <= y+2;

endrule

Example 1

rule ra;

x <= y+1;

endrule

rule rb;

y <= x+2;

endrule

Example 2

rule ra;

x <= y+1;

endrule

rule rb;

y <= y+2;

endrule

Example 3

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-17

Example 1 Example 2 Example 3

RS(ra)

WS(ra)

RS(rb)

WS(rb)

RS(ra)WS(rb)

RS(rb)WS(ra)

WS(ra)WS(rb)

Conflict?

{x}

{x}

{y}

{y}

Ø

Ø

Ø

CF

{y}

{x}

{x}

{y}

{y}

{x}

Ø

C

{y}

{x}

{y}

{y}

{y}

Ø

Ø

SC

Concurrent scheduling
The BSV compiler determines which rules
among the rules whose guards are ready can
be executed concurrently

It builds a simple list-based scheduler:

 Picks the first enabled rule in the list

 Schedules the next enabled rule if it does not conflict
with any of the rules scheduled so far

 Repeats the process until no more rules can be
scheduled

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-18

Such a scheduler can be built as a pure combinational
circuit but it is not fair

In practice it does fine and one can get around it
programmatically

Scheduling and Control
Logic

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-19

Compiling a Rule

f

x

current
state

next
state

d

p

guard

f

x

rule r (f.first() > 0) ;

x <= x + 1 ; f.deq ();

endrule

rdy signals
read methods

next state
values

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-20

Combining State Updates:
strawman

next state
value

flip-flop
enable

R

OR

p1

pn

d1,R

dn,R

OR

p’s from the rules
that update R

d’s from the rules
that update R

What if more than one rule has a true guard?

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-21

Combining State Updates

next state
value

flip-flop
enable

R

Scheduler:
Priority
Encoder

OR

f1

fn

p1

pn

d1,R

dn,R

OR
d’s from the rules

that update R

Scheduler ensures that at most one fi is true

p’s from all
the rules

one-rule-at-
a-time
scheduler is
conservative

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-22

Scheduling and control logic

Modules
(Current state)

Rules

d1

p1 Scheduler

f1

fn

p1

pn

Muxing

d1

dn
dn

pn

Modules
(Next state)

cond

action

“CAN_FIRE” “WILL_FIRE”

Compiler synthesizes a scheduler such that at any
given time f’s for only non-conflicting rules are true

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-23

Takeaway
One-rule-at-a-time semantics are very
important to understand what behaviors a
system can show

Efficient hardware for multi-rule system
requires that many rules execute in parallel
without violating the one-rule-at-time
semantics

BSV compiler builds a scheduler circuit to
execute as many rules as possible
concurrently

September 18, 2017 http://csg.csail.mit.edu/6.175 L06-24

